7.2 BW of $x_{F M}(t)$

Recall that the instantaneous frequency of $\alpha_{F M}(t)$ is given by

$$
f(t)=f_{c}+k m(t)
$$

The BW analysis of FM is quite difficult and therefore we will consider a simplified version of $x_{F M}(t)$.

In this simplified version, $m(t)$ is piecewise constant:

By \& above, this also means $f(t)$ is piecewise constant

In class, we demostated this by considering $x_{F M}(t)$ constructed from 5 different tones.
 we take less time to complete the transmission.

Note that this $x_{F M}(t)$ is a sum of five cosine pulses. We have seen in the HW that even though the fourier transform of the cosine function gives two deltafunctions. The Fourier transform of a cosine pulse gives two sine functions.

To see this, note that a cosine pulse is simply a product between cosine and rectangular pulse:

$$
\begin{aligned}
\underset{t_{1}}{\sim}\left\|_{\text {freq. }}^{\sim}\right\|_{0}
\end{aligned} \quad= \begin{cases}\cos \left(2 \pi f_{0} t\right), & t_{1} \leqslant t<t_{2} \\
0, & \text { other wise. }\end{cases}
$$

The Fourier transform of the rectangular pulse centered around $t=0$ is a sine function. Here, the rectangular pulse is shifted to $\frac{t_{2}+t_{1}}{2}$ and therefore there will be an extra factor of $e^{-j 2 \pi f \frac{t_{1}+t_{2}}{2}}$ by the time-shift property. This does not change the magnitude of the sine function. It is still

Recall that multiplication by $\cos \left(2 \pi f_{0} t\right)$ will shift the spectrum of the rectangular pulse to $\pm f_{0}$.

For the cosine pulse, this means its Fourier transform will be two sine function at $\pm f_{0}$.

Because $\alpha_{F M}(t)$ is a sum of cosine pulses, we can then see that its spectrum will be a sum of sine functions centered at \pm frequencies of the pulses

The width of the since function is controlled by the time interval each tone takes in the tine domain.

Large $R \Rightarrow$ smaller $\frac{1}{R} \Rightarrow$ large mainlope of the sine function.
 of these since functions.

From the sketch above, we can see that the freq. content of $X_{\text {Fm }}(f)$ extends to $\pm \infty$. In other words, it is not band-limited.

However, one may say that the power of the sine is mostly contained in its mainlope. In which case, the " $B W^{\text {" }}$ becomes approximately

$$
R+\left(f_{5}-f_{1}\right)+R=\left(f_{5}-f_{1}\right)+2 R
$$

What we have been considering can be regarded as the digitized (or digital) version of FM.

The analog version is the one where $m(t)$ and $f(t)$ are not limited by the piecewise content behavior.

Digital/ version digitized
(simplified view)

This is where the analysis gets more difficult.
Our approach is to try to approximate the analog $f(t)$ above by a piecewise constant function.

If the approximation is good, then we may be able to approximate the BW of $x_{F M}(t)$ from the "modified $x_{F_{n}}(t)$ " which is constructed via the
approximation.
The value for each piece is determined by the value of $f(t)$ around that time. \Rightarrow Sampling.

